Цифровые измерительные приборы/Глава третья. Цифровые приборы с автономным питанием

< Цифровые измерительные приборы
Выкупить рекламный блок

Большинство цифровых измерительных приборов работает от сети переменного тока и имеет большие габаритные размеры и массу. В ряде случаев это создает определенные неудобства в работе. Поэтому понятен интерес радиолюбителей к созданию легких портативных цифровых измерительных приборов с автономным питанием.

Для увеличения длительности работы прибора с автономным питанием основной задачей, которую приходится решать при разработке такого прибора,является экономичность питания. Именно с этой точки зрения необходимо производить выбор активных элементов, в первую очередь таких, как устройства индикации, интегральные логические и аналоговые микросхемы.

В настоящее время выпускается большое количество разнообразных по принципу действия индикаторных устройств. Это вакуумные накальные и газоразрядные лампы, электролюминесцентные приборы, светоизлучающие диоды. Вакуумные накальные индикаторные лампы, например, ИВ-9, у которых нить накаливания одного сегмента потребляет ток около 20 мА при напряжении 3,15 В, просто не приемлемы для прибора с батарейным питанием. Основным недостатком электролюминесцентных и газоразрядных знаковых индикаторов являются высокие рабочие напряжения (около 200 — 250 В переменного напряжения для люминесцентных и 140 — 190 В постоянного напряжения для газоразрядных индикаторов). Эти напряжения слишком велики для непосредственного применения интегральных микросхем и требуют специальных переходных схем коммутации, а также громоздких преобразователей для получения высокого напряжения.

Вакуумные люминесцентные индикаторы типа ИВ-3 работают при более низком напряжении (20 — 25 В), но требуют второго источника для питания на-кальной нити напряжением 0,8 В с током 50 мА для одной лампы.

Современные светоизлучающие диоды, эффективно преобразующие электрическую энергию в световую, отличаются меньшим потреблением энергии: 5 — 10 мА на сегмент при напряжении 1,5 — 2 В. Их можно использовать в батарейном приборе, например, в таком режиме, когда индикация производится кратковременным нажатием кнопки, только на момент снятия результата, как это делают в некоторых электронных часах.

Однако в настоящее время все больший интерес специалистов привлекают жидкокристаллические индикаторы (ЖКИ). Все перечисленные выше индикаторные приборы, кроме ЖКИ, преобразуют поступающий электрический сигнал в видимое свечение и являются активными излучателями света, а ЖКИ являются его пассивными отражателями. Кроме того, они потребляют малый ток (доли микроампер на знак) и требуют низкого напряжения возбуждения (5 — 10 В). Жидкокристаллические индикаторы можно использовать при самом ярком внешнем освещении, вплоть до прямого солнечного света, причем чем ярче свет, тем отчетливее изображение, в то время как все светоизлучающие индикаторы, наоборот, требуют ограничения внешней освещенности. К достоинствам ЖКИ следует также отнести малый объем плоской конструкции, который определяется в основном размерами индицируемых знаков; низкую стоимость; значительный срок службы, достигающий более 10000 ч. Все это делает применение ЖКИ особенно перспективным в цифровых приборах с батарейным питанием.

Работают ЖКИ при воздействии на них переменных напряжений. Возможна подача на электроды и постоянного напряжения, однако при этом значительно сокращается срок службы индикатора (примерно в 10 раз). Снижение срока службы при работе на постоянном токе происходит из-за деградации жидкокристаллического вещества, в результате падает контрастность, а для ее восстановления приходится увеличивать напряжение возбуждения. Поэтому в настоящее время в основном применяется возбуждение ЖКИ переменным током.

Для управления ЖКИ необходимо правильно прикладывать выбранные переменные напряжения к включенным и выключенным сегментам. Эти напряжения должны быть прямоугольной формы и сдвинуты по фазе на 180°. Выключенные сегменты соединяют с общим электродом. Частоту переключения выбирают не менее 25 Гц, чтобы предотвратить мигание изображения, но не более 200 Гц (чем выше частота, тем больше потребление мощности от источника питания).

При выборе логических интегральных микросхем из-за большой мощности потребления приходится ограничивать применение микросхем серии К155. Лучшими здесь следует признать интегральные микросхемы на КМОП транзисторах серий К176, К561, которые потребляют микроваттную мощность. Для аналоговой части прибора следует выбирать ОУ с током потребления 1,54-2,5 мА (К140УД7, К140УД6, К553УД2, К153УД4, К153УД5), снизив напряжение их питания до 6 — 9 В.