Серии микросхем для линейных и импульсных устройств

Материал из РадиоВики - энциклопедии радио и электроники
Перейти к: навигация, поиск
Выкупить рекламный блок

Промышленностью освоена широкая номенклатура серий микро­схем, предназначенных для создания линейных и импульсных устройств различного назначения.

Это в первую очередь серии К101, КП8, КИ9, К122, К124, К162, К218, К228, К249, К722.

Рис. 2.18. Микросхемы серии К122

Микросхемы серий КИ8, К122 и К722 для линейных и порого­вых устройств. Серии КИ8, К122 и К722 близки по составу и раз­личаются конструктивным оформлением микросхем. Для этих серий характерна универсальность входящих в их состав микросхем. Рас­смотрим схемотехнические особенности некоторых из них.

Микросхема К122УД1 является однокаскадным дифференциаль­ным усилителем постоянного тока, принципиальная схема которого показана на рис. 2.18,а.

Основу усилителя составляют транзисторы Т} и Т2 с идентич­ными параметрами. Совместно с равными по сопротивлению рези­сторами Ri и Ri эти транзисторы образуют сбалансированную мо­стовую схему. В идеальном случае напряжение на диагонали моста между выводами 5 и 9 при отсутствии входного сигнала должно быть равно нулю.

Одно из важнейших достоинств дифференциальных усилителей заключается в том, что балансировка моста не нарушается и в слу­чае синфазного воздействия на выводы 4 и 10. Обычно появление синфазного сигнала объясняется наличием наводок или других помех. Они вызывают одинаковые по амплитуде и фазе изменения напряжений на входах обоих транзисторов, а следовательно, и иден­тичные изменения токов через них. В результате напряжение меж­ду выводами 5 и 9 не претерпевает изменений, что свидетельствует о подавлении синфазной помехи.

Полезный сигнал обычно подается на дифференциальный вход между базовыми выводами транзисторов Т} и Т2. В этом случае входные сигналы обоих транзисторов равны по амплитуде и про­тивоположны по фазе. Изменение тока коллектора одного из тран­зисторов сопровождается противофазным изменением тока второго транзистора. Как следствие, появляется и меняется в соответствии с сигналом разность напряжений между коллекторами транзисторов дифференциальной пары (выводы 5 и 9).

Кроме работы на симметричный выход микросхема К122УД1 может использоваться и с несимметричным выходом. При этом несколько ухудшается подавление синфазной помехи.

Важным элементом большинства интегральных дифференци­альных усилителей является токостабилизирующий двухполюсник (генератор то-ка), подобный тому, который выполнен в рассматри­ваемой микросхеме на транзисторе Т3 и включен в общую эмит-терную цепь транзисторов Т1 и Т2. Двухполюсник играет важную роль в обеспечении подавления синфазной помехи и заменяет вы-сокоомный резистор, создание которого в полупроводниковых ми­кросхемах вызывает ряд затруднений.

Если токостабилизирующий двухполюсник идеален, т. е. имеет бесконечное дифференциальное сопротивление, то воздействие син­фазной помехи вызывает только приращение потенциала эмиттеров Транзисторов TI и Т2. При этом токи и потенциалы их коллекторов не изменяются. Если же токостабилизирующий двухполюсник не идеален, то приращение потенциала эмиттеров транзисторов TI и Т2 сопровождается приращением токов и потенциалов их коллек­торов, т. е. появлением синфазной составляющей на выходе уси­лителя. При некоторой несимметрии плеч дифференциальной пары это приведет и к возникновению паразитной дифференциальной составляющей выходного напряжения. Таким образом, внутреннее дифференциальное сопротивление токостабилизирующего двухпо­люсника должно быть как можно больше.

Режим транзистора токостабилизирующего элемента опреде­ляется резистором R3 и делителем базового смещения, образован­ным резисторами R6, R4 и R5, а также транзистором Т4 в диодном включении. Транзистор T4 применен для стабилизации тока тран­зистора Т3 при изменении температуры.

Изменением потенциала на базе транзистора Т3 (для этого можно использовать выводы 8, 11 или 12) достигают изменения динамического диапазона усилителя, а также входного сопротив­ления.

Микросхему К122УД1 выпускают в трех модификациях (А, Б и В). Они различаются по значению питающего напряжения (±4В±10% и ±6,ЗВ±10%), минимальному коэффициенту уси­ления (15 и 24), входному сопротивлению (6 и 3 кОм), входному току (10 -и 20 мкА) и по другим параметрам.

Микросхема К122УН1 (рис. 2.18,6) — двухкаскадный усилитель переменного тока. Ее выпускают в пяти модификациях, различаю­щихся напряжением питания (6,3 В±10% и 12,6 В±10%), ми­нимальным коэффициентом усиления (от 250 до 800 на частоте 12 кГц и от 30 до 50 на частоте 5 МГц) и постоянным напряже­нием на выходе (2,4 — 3,8 В для модификаций А и Б, 7,0 — 9,6 В для остальных). Входное сопротивление 2, выходное сопротивление 1,2 — 3 кОм.

Каскад на транзисторе Т1 выполнен по схеме ОЭ. Транзистор Т2 может быть использован как в схеме ОЭ, так и в схеме ОК. Через резисторы Rt и Ra транзисторы охвачены отрицательной обратной связью, определяющей и стабилизирующей режимы по постоянному току. Для устранения обратной связи по переменному току достаточно подключить конденсатор большой емкости к вы­водам 5 или 11. Выводы 3 и 11 используют для соединения ми­кросхемы с резистивными или емкостными элементами, меняющими или полностью устраняющими последовательную обратную связь в каждом каскаде, реализующими новые цепи обратной связи позволяющими регулировать режим транзисторов по постоянному току и т. д. Вывод 10 предусмотрен для подключения фильтрующих или корректирующих конденсаторов.

В зависимости от схемы включения транзистора Т2 роль на­грузки могут выполнять резисторы R7 (в схеме ОК) или R5 (в схе­ме ОЭ), а также внешние элементы.

Микросхема К122УН2 (рис. 2.18,е) представляет собой трех-каскадный усилитель с каскодным соединением транзисторов Г2 и Т3. Включенный по схеме ОЭ транзистор T1 охвачен обратной связью по напряжению через резистор R1.

Транзистор T1 может служить для усиления или для создания необходимого режима работы транзисторов Т2 и Т3 по постоянному току. Вывод 4 можно использовать для подачи сигнала, если для усиления использовать только транзисторы Т3 и Т2, или для под­ключения цепи АРУ. В последнем случае благодаря наличию в схе­ме резистора R4 изменение регулирующего напряжения не окажет заметного влияния на входное сопротивление усилителя и на фор­му его частотной характеристики. Подключением к выводу 11 кон­денсатора большой емкости обеспечивают заземление базы тран­зистора Т3 по переменной составляющей.

Микросхема может использоваться как с внутренней нагрузкой (резистор Rs), так и с различными по характеру внешними на­грузками, включаемыми между выводами 7 и 9.

Выпускают три модификации (А, Б, и В) микросхемы К122УН2 с коэффициентом усиления на частоте 12 кГц не менее 15, 25 и 40 и напряжением питания 4 В±10% (А) или 6,3 В ±10% (Б, В). ~

Серии КН8 и К722 содержат кроме усилительных микросхем видеоусилитель и триггер Шмитта, выпускаемые в нескольких мо­дификациях.

Видеоусилители обеспечивают напряжение на выходе 55 или 11 В при коэффициенте усиления на частоте 12 кГц от 900 до 2000. Напряжение питания 6,3 В ±10% или 12,6 В +10 %

Модификации триггера Шмитта различаются по питающему напряжению (±3 В ±10%, ±4 В ±10%, ±6,3 В ±10%) пи входному току (20 и 40 мкА), а также по уровням входного и выходного напряжений.

Микросхемы серий КП9, К218 и К228 для линейных и им­пульсных устройств. Серия микросхем КН9 включает в себя два усилителя НЧ с коэффициентом усиления 2 — 5 (КН9УН1) и 7—13 (КП9УН2) на частоте 10 кГц и с верхней граничной частотой 100 кГц; дифференциальный усилитель (К119УТ1) с коэффициен­том усиления 3 — 5 и рабочим диапазоном частот 5 Гц—200 кГш эмиттерный повторитель КИ9УЕ1, обеспечивающий на частоте 1 кГц коэффициент передачи не менее 0,7; видеоусилитель КП9УИ1 для усиления импульсов отрицательной полярности с длительно­стью от 0,3 до 500 мкс, имеющий на частоте 10 кГц коэффициент передачи 4 — 10; мультивибратор с самовозбуждением КП9ГП вырабатывающий импульсы с длительностью 7 — 25 икс и с ампли­тудой не менее 1,2 В; регулирующий элемент АРУ КН9МА1 с ко­эффициентом ослабления 2 — 8; детектор АРУ К119ДА1 с рабочим диапазоном частот 5 Гц — 40 кГц и с коэффициентом передачи на частоте 10 кГц не менее 0,6; линейный пропускатель КН9СВ1 с коэффициентом передачи не менее 0,65; чувствительный триггер Шмитта КН9ТЛ1 с порогами срабатывания и отпускания 0±0,1 В, а также коммутатор КН9КП1, активные элементы схем частотной селекции КН9СС1 и КН9СС2, диодный мост К119ПП1 и элемент блокинг-генератора КН9АГ1.

Для питания микросхем серии используются напряжения ±3, ±6,3, 12В с допуском ±10 %.

Серия К218 состоит из трех импульсных усилителей (К218УИ1 — К218УИЗ), усиливающих импульсы любой полярности длительностью 0,3 — 500 мкс с коэффициентом передачи не менее 3; двух эмиттерных повторителей К218УЕ1 и К.218УЕ2 (положитель­ной полярности и биполярного), предназначенных для передачи импульсов длительностью 0,3 — 1,5 мкс с коэффициентом передачи более 0,8; усилителя ПЧ К218УР1 с частотным диапазоном 22,5 — 37,5 МГц и с коэффициентом усиления не менее 7; автоко­лебательного мультивибратора К218ГГ1 с амплитудой выходных импульсов более 3 В при частоте следования от 50 Гц до 0,6 МГц; ждущего мультивибратора К218АГ1, работающего при амплитуде входных импульсов 2,5 — 6 В (отрицательной полярности), следую­щих с частотой менее 250 кГц; детектора радиоимпульсов К218ДА1 с линейным участком амплитудной характеристики не менее 400 мВ и с коэффициентом передачи на несущей частоте 30 МГц от 0,5 до 1; триггера с комбинированным запуском К218ТК1. Напряжение питания микросхем серии К218 6,3 В ±10 %.

Серия К228 существенно дополняет серию К218.

Микросхемы этих серий согласованы по стыковочным парамет­рам и напряжению питания. Они имеют единое конструктивное оформление.

В состав серии К228 входят: три усилителя (универсальный К228УВ1, каскодный К228УВЗ и регулируемый К228УВ2) с верх­ней граничной частотой 60 МГц и с крутизной характеристики на этой частоте не менее 7,5 мА/В (причем регулируемый усилитель обеспечивает возможность изменения крутизны в пределах 40 дБ); балансный усилитель К228УВ4 с крутизной вольт-амперной харак­теристики более 5 мА/В на частоте 5 МГц, обеспечивающий раз­баланс на выходе менее 3 дБ; устройство сравнения токов К228СА1 с током срабатывания не более 20 мкА; диодный ключ К228КН1, обеспечивающий отношение выходных напряжений в со­стояниях «Открыто» и «Закрыто» не менее 100; два диодно-рези-сторных декодирующих преобразователя К228ПП1 и К228ПП2 с управляющими напряжениями +1 и — 1 В, а также комбиниро­ванная диодно-резистивная матрица К228НК1 и конденсаторная сборка К228НЕ1 из пяти конденсаторов по 12000 пФ.

Для питания микросхем серии К228 используется напряжение ±6,3 В ±10%.

Микросхемы прерывателей и ключей. Серии К101, К124, К162, К743 составлены из микросхем, предназначенных преимущественно для коммутации слабых сигналов постоянного и переменного то­ков. В качестве прерывателей они применяются в разрядных клю­чах, преобразователях код-аналог, аналог-код и т. д.

Каждая микросхема представляет собой два идентичных n-p-n (К101, К743) или р-n-р (К124, К162) транзистора, объединенных в последовательный структурно-компенсированный ключ Как по­казано на примере микросхемы К101КТ1 (рис. 2.19), коммутируе­мую цепь подключают к эмиттерным выводам транзисторов (вы воды 3 и 7), а управляющий сигнал подают между коллекторами и базами обоих транзисторов.

Рис. 2.19. Микросхема К101КТ1 (а) и варианты ее использования: прерыватель (б), модулятор (в), составной транзистор (г)

На практике необходимо, чтобы транзисторный ключ имел воз­можно меньшее значение остаточного напряжения. В микросхемах рассматриваемых серий это достигается, во-первых, в результате выполнения транзисторов в едином технологическом цикле с иден­тичными параметрами, а во-вторых, в результате инверсного вклю чения транзисторов. Остаточные напряжения обоих транзисторов направлены встречно, взаимно компенсируясь, что и позволяет ком­мутировать весьма слабые сигналы.

Дополнительная регулировка остаточного напряжения возмож на с помощью переменного резистора, включаемого в колчекторную цепь. Такая схема может найти применение даже в высококаче­ственных ключах эталонных напряжений. При этом следует пом­нить, что чем больше регулировочное сопротивление, тем уже диа­пазон переключаемых токов, в котором проявляются достоинства схемы.

Микросхемы прерывателей находят применение и в других электронных устройствах.

В табл. 2.5 приведены основные параметры интегральных пре­рывателей.

Таблица 2.5

Серия 249 состоит из одной микросхемы 2КЭ491, выпускаемой в четырех модификациях (А — Г). Микросхема содержит два опто-электронных ключа (рис. 2.20,а). Каждый из ключей состоит из светодиода и фототранзистора. Особенности таких устройств — гальваническая развязка входной и выходной цепей и однонаправленность передачи сигналов. Для подобных оптоэлектронных ключей характерно сопротивление изоляции, превышающее 108 — 1014 Ом. Практически идеальная развязка обеспечивает ряд воз­можностей, не реализуемых в чисто электронных устройствах. Например, с помощью низких напряжений можно управлять вы­соковольтными цепями, можно связать цепи, работающие на различных частотах, и т. д. Применение оптоэлектронных ключей способствует значительному улучшению помехозащищенности устройств, так как оптические связи разрывают цепи проникно­вения помех. Еще одно достоинство оптоэлектронных ключей — возможность их совместной работы практически со всеми логиче­скими микросхемами.

Ключ на микросхеме 2КЭ491 может работать на двухпровод­ную линию (в режиме «оторванной» базы). Если необходимо обес­печить высокое быстродействие, такой режим неприемлем и це­лесообразно включить резистор параллельно эмиттерному переходу.

Это приведет к уменьшению времени рассасывания заряда в базе фототранзистора при выходе из режима насыщения. Например, подключение резистора с сопротивлением 3,9 кОм сокращает время выключения вдвое.

Коэффициент передачи тока любого из ключей не менее 0,5 для микросхем модификаций А и В и не менее 0,3 для микросхем Модификаций Б и Г.

Рис. 2.20. Оптоэлектронный ключ (а) и зависимости его па­раметров от температуры (б)

Время нарастания и спада с учетом времени задержки не бо­лее 3 мкс при нагрузке 100 Ом. Напряжение насыщения фото­транзистора не более 0,3 В при коллекторном токе 3 мА для ми­кросхем модификаций А и В и при коллекторном токе 2 мА — для остальных. Напряжение на светодиоде 1,1 — 1,3 В при прямом токе 10 мА. Проходная емкость менее 5 пФ. У оптоэлектронных ключей 2КЭ491 максимальное остаточное напряжение на отдельном фото­транзисторе не превышает 1 мВ. Это позволяет при встречно-па­раллельном включении получать остаточное напряжение менее 0,2 мВ.

Импульсные характеристики оптоэлектронных ключей сущест­венно зависят от температуры. На рис. 2.20,6 показаны темпера­турные зависимости времени задержки нарастания выходного тока (кривая 1), времени нарастания импульса тока (кривая 2), време­ни задержки спада импульса тока (кривая 3) и времени спада импульса тока (кривая 4).

Микросхему 2КЭ491 применяют преимущественно в качестве прерывателя. Кроме того, она может быть использована для моду­ляции аналоговых сигналов, для управления мощными транзисто­рами и т. д. Фототранзисторы микросхемы можно включить по схеме составного транзистора и обеспечить коэффициент усиления тока до 100.

Большие перспективы открывает применение пар «светодиод—фототранзистор» в дифференциальных усилителях. В [1] показа­но, что в таком усилителе коэффициент подавления синфазной помехи достигает 220 дБ.