Страница:МРБ 0733. Эймишен Ж.-П. Электроника?.. Нет ничего проще!.djvu/180

Материал из РадиоВики - энциклопедии радио и электроники
Перейти к: навигация, поиск
Выкупить рекламный блок
Эта страница не была вычитана


Для облегчения твоей работы я над каждой колонкой расположил маленькие буковки: а обозначает единицы, b — двойки, с — четверки, d — восьмерки, е — шестнадцатки (прости мие этот неологизм, несколько напоминающий десятки), f — трид- цать-двойки, g — шестьдесят-четверки и h — сто-двадцать-вось- мерки. Теперь можно начинать. 1

Н. — Возьмусь за дело. Предполагаю, что здесь поступают, как в десятичной арифметике. Не так ли?

Л. — Совершенно верно, только в двоичной арифметике элементарное сложение цифр производится по другим правилам.

Н. — Так, смело вперед. В колонке единиц, обозначенной буквой а, мы имеем 1 вверху и нуль внизу. Я естественно предполагаю, что нуль плюс 1 дает 1 и записываю полученный результат под чертой. Правильно?

Л. — Очень хорошо, но сознайся, что этот случай был не очень сложным.

Н. — Охотно признаю, а теперь перейдем к обозначенной буквой 6 колонке двоек. Это сложение меня несколько смущает; в обоих числах здесь стоят нули.

Л. — Но это самый классический случай, он настолько прост, что проще не бывает. Какой бы арифметикой мы ни занимались, для меня нуль плюс нуль всегда дает нуль.

Н. — Очень логично, об этом следовало бы подумать. Итак, в сумме на месте двоек я записываю нуль. Переходим к четверкам, обозначенным буквой с. Здесь тоже нет ничего трудного: 1 вверху и нуль внизу дают в сумме 1, что и записываю под чертой. С восьмерками дело обстоит чуточку посложнее; вверху у нас 1 и внизу тоже 1, их сумма 2, а у меня нет цифры 2, чтобы записать полученный результат.

Л. — Действительно у тебя нет цифры 2, но ты можешь записать число 2 в двоичной системе в виде 1, за которой следует нуль. Иначе говоря, ты оказался в таком же положении, как при сложении по правилам десятичной арифметики, когда полученный результат превышает 10. Как ты обычно поступаешь в таком случае?

Н. — В таком случае я просто-напросто записываю цифру единиц и запоминаю цифру десятков.

JJ. — Хорошо, так запиши цифру единиц, т. е. нуль в колонку d и запомни цифру двоек, в нашем случае 1, которую ты потом прибавишь к сумме, подученной в колонке е.

Н. — Продолжим; в колонке е все обходится без каких бы то ни было трудностей; нуль в одном слагаемом, нуль в другом слагаемом да запомненная 1 дают в сумме только 1. Этот результат я и вписываю под чертой в колонке е. В колонке f мы сталкиваемся с уже знакомым положением: 1 Н~ 1 дают в сумме 2 —

я записываю нуль и запоминаю 1, которую предстоит прибавить к результату, полученному в колонке g.

А вот с колонкой g справиться значительно труднее, потому что там мы имеем три слагаемых и каждое из них равно 1.

Л. — Но тебе надлежит применить этот же самый принцип. Сложение трех чисел по 1 в сумме дают 3, а это число в дво-

1 Двоичная и десятичная системы счисления относятся к так называемым позиционным системам счисления, в которых цифры имеют различные значения в зависимости от того, на каком месте в записи числа они стоят. Существуют непозиционные системы счисления, как, например, римские цифры. В этой системе смысл каждого символа не зависит от его местоположения в записи числа: L = (50)10, С = (ЮО)10, V = (5)10, LXXVI = 76. (Прим. ред.).