Колебательный контур

Материал из РадиоВики - энциклопедии радио и электроники
Перейти к: навигация, поиск
Выкупить рекламный блок

Устройство и схема простейшего колебательного контура показаны на рис. 40. Он, как видишь, состоит из катушки L и конденсатора C, образующих замкнутую электрическую цепь. При некоторых условиях в контуре могут возникнуть и существовать электрические колебания. Поэтому его и называют колебательным контуром.

Рис. 40. Простейший электрический колебательный контур.

Приходилось ли тебе наблюдать такое явление: в момент выключения питания электроосветительной лампы между размыкающимися контактами выключателя появляется искра. Если случайно соединить полосы батареи электрического карманного фонарика (чего нужно избегать), в момент их разъединения между ними также проскакивает маленькая искра. А на электростанциях, на заводах, где рубильниками разрывают электрические цепи, по которым текут очень большие токи, искры могут быть столь значительными, что приходится принимать меры, чтобы они не причинили вреда человеку, включающему ток. Почему возникают эти искры?

Рис. 41. Магнитные силовые линии вокруг проводника с током.

Из первой беседы ты уже знаешь, что вокруг проводника с током существует магнитное поле, которое можно изобразить в виде замкнутых магнитных силовых линий, пронизывающих окружающее его пространство (рис. 41). Обнаружить это поле, если оно постоянное, можно с помощью магнитной стрелки компаса. Если отключить проводник от источника тока, то его исчезающее магнитное поле, рассеиваясь в пространстве, будет индуцировать токи в других проводниках. Ток индуцируется и в том проводнике, который создал это магнитное поле. А так как он находится в самой гуще своих же магнитных силовых линий, в нем будет индуцироваться более сильный ток, чем в любом другом проводнике. Направление этого тока будет таким же, каким оно было в момент разрыва проводникам Иначе говоря, исчезающее магнитное поле будет поддерживать создавший его ток до тех пор, пока оно само не исчезнет, т. е. полностью не израсходуется содержащаяся в нем энергия. Следовательно, ток в проводнике течет и после того, как выключен источник тока, но, разумеется, недолго — ничтожно малую долю секунды.

Но ведь в разомкнутой цепи движение электронов невозможно, — возразишь ты. Да, это так. Но после размыкания цепи электрический ток может некоторое время течь через воздушный промежуток между разъединенными концами проводника, между контактами выключателя или рубильника. Вот этот ток через воздух и образует электрическую искру.

Это явление называют самоиндукцией, а электрическую силу (не путай с индукцией, о которой мы говорили в первой беседе), которая под действием исчезающего магнитного поля поддерживает в нем ток,— электродвижущей силой самоиндукции или, сокращенно, э.д.с. самоиндукции. Чем больше э.д.с. самоиндукции, тем значительнее может быть искра в месте разрыва электрической цепи.

Явление самоиндукции наблюдается не только при выключении, но и при включении тока. В пространстве, окружающем проводник, магнитное поле возникает сразу при включении тока. Вначале оно слабее, но затем очень быстро усиливается. Усиливающееся магнитное поле тока тоже возбуждает ток самоиндукции, но этот ток направлен навстречу основному току. Ток самоиндукции мешает мгновенному увеличению основного тока и росту магнитного поля. Однако через короткий промежуток времени основной ток в проводнике преодолевает встречный ток самоиндукции и достигает наибольшего значения, магнитное поле становится неизменным и действие самоиндукции прекращается.

Явление самоиндукции можно сравнивать с явлением инерции. Санки, например, трудно сдвинуть с места. Но когда они наберут скорость, запасутся кинетической энергией — энергией движения, их невозможно остановить мгновенно. После торможения они продолжают скользить до тех пор, пока запасенная ими энергия движения не израсходуется на преодоление трения о снег.

Все ли проводники обладают одинаковой самоиндукцией? Нет! Чем длиннее проводник, тем значительнее самоиндукция. В проводнике, свернутом в катушку, явление самоиндукции сказывается сильнее, чем в прямолинейном проводнике, так как магнитное поле каждого витка катушки наводит ток не только в этом витке, но и в соседних витках этой катушки. Чем больше длина провода в катушке, тем дольше будет существовать в нем ток самоиндукции после выключения основного тока. И, наоборот, потребуется больше времени после включения основного тока, чтобы ток в цепи возрос до определенного значения и установилось постоянное по силе магнитное поле.

Запомни: свойство проводников влиять на ток в цепи при изменении его величины называют индуктивностью, а катушки, в которых наиболее сильно проявляется это свойство, — катушками самоиндукции или индуктивности. Чем больше число витков и размеры катушки, тем больше ее индуктивность, тем значительнее влияние ее на ток в электрической цепи.

Итак, катушка препятствует как нарастанию, так и убыванию тока в электрической цепи. Если она находится в цепи постоянного тока, влияние ее сказывается только при включении и выключении тока. В цепи же переменного тока, где беспрерывно изменяются ток и его магнитное поле, э.д.с. самоиндукции катушки действует все время, пока течет ток. Это электрическое явление и используется в первом элементе колебательного контура приемника — катушке.

Рис. 42. Заряд и разряд конденсатора.

Вторым элементом колебательного контура приемника является «накопитель» электрических зарядов — конденсатор. Простейший конденсатор представляет собой два проводника электрического тока, это могут быть две металлические пластинки, именуемые обкладками конденсатора, разделенные непроводником электрического тока — диэлектриком, например воздухом или бумагой. Таким конденсатором ты уже пользовался во время опытов с простейшим приемником. Чем больше площадь обкладок конденсатора и чем ближе они расположены друг к другу, тем больше электрическая емкость этого прибора.

Если к обкладкам конденсатора присоединить источник постоянного тока (рис. 42, а), то в образовавшейся цепи возникнет кратковременный ток и конденсатор зарядится до напряжения, равного напряжению источника тока.

Ты можешь спросить: почему в цепи, где есть диэлектрик, возникает ток? Когда мы присоединяем к конденсатору источник постоянного тока, свободные электроны в проводниках образовавшейся цепи начинают двигаться в сторону положительного полюса источника тока, образуя кратковременны поток электронов во всей цепи. В результате, обкладка конденсатора, которая соединена с положительным полюсом источника тока, обедняется свободными электронами и заряжается положительно, а другая обогащается свободными электронами и, следовательно, заряжается отрицательно. Как только конденсатор зарядится, кратковременный ток в цепи, именуемый током заряда конденсатора, прекратится.

Если источник тока отключить от конденсатора, то конденсатор окажется заряженным (рис. 42, б). Переходу избыточных электронов с одной обкладки на другую препятствует диэлектрик. Между обкладками конденсатора тока не будет, а накопленная им электрическая энергия будет сосредоточена в электрическом поле диэлектрика. Но стоит обкладки заряженного конденсатора соединить проводником (рис, 42, в), «излишние» электроны отрицательно заряженной обкладки перейдут по этому проводнику на другую обкладку, где их недостает, и конденсатор разрядится. В этом случае в образовавшейся цепи также возникает кратковременный ток, называемый током разряда конденсатора. Если емкость конденсатора большая и он заряжен до значительного напряжения, момент разряда сопровождается появлением значительной искры и треска.